

HEAD BOLTS

In many cases the original equipment head bolts for this engine utilized a head bolt with a separate washer. The head bolts in this set are of most current design that utilize a washer flange integral to the bolt head. This design will replace the original head bolts and washer combination

Also, the original style head bolt used an allen type head.

The current design can be installed using a Torx E-20 or Torx Plus E-20 socket.

IMPORTANT: Consult the latest OEM torque specifications as changes may have taken place since this printing

To assure proper engine re-assembly, the following procedures must be followed.

PRE-POSITION CRANKSHAFT: Crankshaft keyway must be positioned at 270° (45° BTDC) before installation of cylinder head. This insures that all pistons are below the top of the cylinder block deck surface which prevents interference of

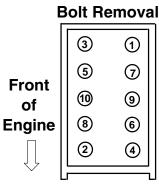
Bolt Removal (3) (1)(5) 7 Front (9) (8) (6) Engine (2) (4)

REMOVE HEAD BOLTS following sequence shown in illustration.

-continued-

HEAD BOLTS

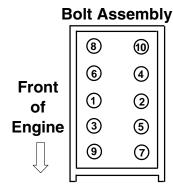
In many cases the original equipment head bolts for this engine utilized a head bolt with a separate washer. The head bolts in this set are of most current design that utilize a washer flange integral to the bolt head. This design will replace the original head bolts and washer combination.


Also, the original style head bolt used an allen type head.

The current design can be installed using a Torx E-20 or Torx Plus E-20 socket.

IMPORTANT: Consult the latest OEM torque specifications as changes may have taken place since this printing

To assure proper engine re-assembly, the following procedures must be followed.


PRE-POSITION CRANKSHAFT: Crankshaft keyway must be positioned at 270° (45° BTDC) before installation of cylinder head. This insures that all pistons are below the top of the cylinder block deck surface which prevents interference of piston to valve

REMOVE HEAD BOLTS following sequence shown in illustration.

-continued-

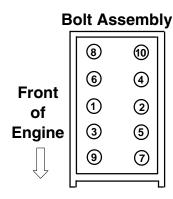
PREPARE BOLTS: Lubricate the underside of every bolt head with oil. Determine which bolts extend into the coolant passages. Those entering the coolant passages require a pliable non-hardening sealer on the threads. Those bolts not entering the coolant passages require oil on the threads.

IMPORTANT: Consult the latest OEM torque specifications as changes may have taken place since this printing.

TORQUE SPECIFICATIONS: Follow sequence shown in illustration, torque all bolts in the following steps:

1st Step: 72

2nd Step: Loosen all bolts


3rd Step: 25-33 4th Step: turn 75-80 degrees 5th Step: turn 75-80 degrees

TEST RUN ENGINE: Check all mating areas thoroughly to determine that all seals hold during operation.

© 2012 Federal-Mogul Corporation Form No. I-2097 (Rev. 04/14)

Printed in U.S.A.

PREPARE BOLTS: Lubricate the underside of every bolt head with oil. Determine which bolts extend into the coolant passages. Those entering the coolant passages require a pliable non-hardening sealer on the threads. Those bolts not entering the coolant passages require oil on the threads.

IMPORTANT: Consult the latest OEM torque specifications as changes may have

TORQUE SPECIFICATIONS: Follow sequence shown in illustration, torque all bolts in the following steps:

1st Step: 72

2nd Step: Loosen all bolts

3rd Step: 25-33 4th Step: turn 75-80 degrees 5th Step: turn 75-80 degrees

TEST RUN ENGINE: Check all mating areas thoroughly to determine that all seals hold during operation.

© 2012 Federal-Mogul Corporation Form No. I-2097 (Rev. 04/14)

Printed in U.S.A.

HEAD BOLTS

In many cases the original equipment head bolts for this engine utilized a head bolt with a separate washer. The head bolts in this set are of most current design that utilize a washer flange integral to the bolt head. This design will replace the original head bolts and washer combination.

Also, the original style head bolt used an allen type head.

The current design can be installed using a Torx E-20 or Torx Plus E-20 socket.

IMPORTANT: Consult the latest OEM torque specifications as changes may have taken place since this printing

To assure proper engine re-assembly, the following procedures must be followed.

PRE-POSITION CRANKSHAFT: Crankshaft keyway must be positioned at 270° (45° BTDC) before installation of cylinder head. This insures that all pistons are below the top of the cylinder block deck surface which prevents interference of piston to valve.

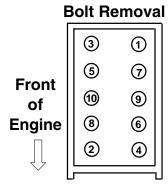
Bolt Removal (3) (1) (5) (7)**Front** (10) 9 of (8) 6 Engine 2 4

REMOVE HEAD BOLTS following sequence shown in illustration.

-continued-

HEAD BOLTS

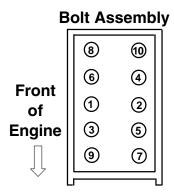
In many cases the original equipment head bolts for this engine utilized a head bolt with a separate washer. The head bolts in this set are of most current design that utilize a washer flange integral to the bolt head. This design will replace the original head bolts and washer combination


Also, the original style head bolt used an allen type head.

The current design can be installed using a Torx E-20 or Torx Plus E-20 socket.

IMPORTANT: Consult the latest OEM torque specifications as changes may have taken place since this printing

To assure proper engine re-assembly, the following procedures must be followed.


PRE-POSITION CRANKSHAFT: Crankshaft keyway must be positioned at 270° (45° BTDC) before installation of cylinder head. This insures that all pistons are below the top of the cylinder block deck surface which prevents interference of piston to valve.

REMOVE HEAD BOLTS following sequence shown in illustration.

-continued-

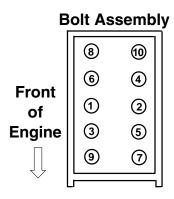
PREPARE BOLTS: Lubricate the underside of every bolt head with oil. Determine which bolts extend into the coolant passages. Those entering the coolant passages require a pliable non-hardening sealer on the threads. Those bolts not entering the coolant passages require oil on the threads.

IMPORTANT: Consult the latest OEM torque specifications as changes may have taken place since this printing.

TORQUE SPECIFICATIONS: Follow sequence shown in illustration, torque all bolts in the following steps:

1st Step: 72

2nd Step: Loosen all bolts


3rd Step: 25-33 4th Step: turn 75-80 degrees 5th Step: turn 75-80 degrees

TEST RUN ENGINE: Check all mating areas thoroughly to determine that all seals hold during operation.

© 2012 Federal-Mogul Corporation Form No. I-2097 (Rev. 04/14)

Printed in U.S.A.

PREPARE BOLTS: Lubricate the underside of every bolt head with oil. Determine which bolts extend into the coolant passages. Those entering the coolant passages require a pliable non-hardening sealer on the threads. Those bolts not entering the coolant passages require oil on the threads.

IMPORTANT: Consult the latest OEM torque specifications as changes may have

TORQUE SPECIFICATIONS: Follow sequence shown in illustration, torque all bolts in the following steps:

1st Step: 72

2nd Step: Loosen all bolts 3rd Step: 25-33 4th Step: turn 75-80 degrees 5th Step: turn 75-80 degrees

TEST RUN ENGINE: Check all mating areas thoroughly to determine that all seals

© 2012 Federal-Mogul Corporation Form No. I-2097 (Rev. 04/14)

Printed in U.S.A.